All publications

‡corresponding author, *equal contribution​



37. Xiong K, la Cour Karottki KJ, Hefzi H, Li S, Grav LM, Li S, Spahn P, Lee JS, Lee GM, Kildegaard HF, Lewis NE‡, Pedersen LE‡.

Using targeted genome integration for virus-free genome-wide mammalian CRISPR screen. bioRxiv. (2020) DOI: 10.1101/2020.05.19.103648


36. Karottki KJC, Hefzi H, Li S, Pedersen LE, Spahn PN, Joshi C, Ruckerbauer D, Bort JAH, Thomas A, Lee JS, Borth N, Lee GM, Kildegaard HF‡, Lewis NE‡. A metabolic CRISPR-Cas9 screen in Chinese hamster ovary cells identifies glutamine-sensitive genes. Metab. Eng., In press (2021)

35. Shin SW*, Kim D*, Lee JS. Controlling Ratios of Plasmid-Based Double Cut Donor and CRISPR/Cas9 Components to Enhance Targeted Integration of Transgenes in Chinese Hamster Ovary Cells. Int. J. Mol. Sci., 22(5), 2407 (2021)

34. Kwak JM*, Lee Y*, Shin SW*, Lee JS. Hydroxyurea selection for enhancing homology-directed targeted integration of transgenes in CHO cells. New Biotechnol., 62, 26-31 (2021)


33. Shin SW, Lee JS. CHO Cell Line Development and Engineering via Site-specific integration: Challenges and Opportunities. Biotechnol. Bioproc. E., 25, 633-645 (2020) 

32. Lee Y, Kwak JM, Lee JS. Endogenous p21-Dependent Transgene Control for CHO Cell Engineering. ACS Synth. Biol., 9(7), 1572-1580 (2020)

31. Shin SH, Kim SH, Shin SW, Grav LM, Pedersen LE, Lee JS‡, Lee GM‡. Comprehensive Analysis of Genomic Safe Harbors as a Target Site for Stable Expression of Heterologous Gene in HEK293 Cells. ACS Synth. Biol., 9(6), 1263-1269 (2020)

30. Shin SW, Lee JS. Optimized CRISPR/Cas9 Strategy for Homology-Directed Multiple Targeted Integration of Transgenes in CHO Cells. Biotechnol. Bioeng., 117(6), 1895-1903 (2020)

29. Karottki KJC, Hefzi H, Xiong K, Shamie I, Hansen AH, Li S, Pedersen LE, Li S, Lee JS, Lee GM, Kildegaard HF‡, Lewis NE‡. Awakening dormant glycosyltransferases in CHO cells with CRISPRa. Biotechnol. Bioeng., 117(2), 593-598 (2020)


28. Ha TK*, Lee JS*, Lee GM. Platform Technology for Therapeutic Protein Production. Cell Culture Engineering: Recombinant Protein Production, 1-22 (2019) 

27. Sergeeva D, la Cour Karottki KJ, Lee JS, Kildegaard HF. CRISPR Toolbox for Mammalian Cell Engineering. Cell Culture Engineering: Recombinant Protein Production, 185-206 (2019) 

26. Sergeeva D, Camacho-Zaragoza JM, Lee JS, Kildegaard HF. CRISPR/Cas9 as a Genome Editing Tool for Targeted Gene Integration in CHO Cells. Methods Mol. Biol., 1961, 213-232 (2019)

25. Xiong K*, Marquart KF*, la Cour Karottki KJ*, Li S, Shamie I, Lee JS, Gerling S, Yeo NC, Chavez A, Lee GM, Lewis NE‡, Kildegaard HF‡. Reduced Apoptosis in Chinese Hamster Ovary Cells via Optimized CRISPR Interference. Biotechnol. Bioeng., 116(7), 1813-1819 (2019)

24. Lee JS‡, Kildegaard HF, Lewis NE, Lee GM‡. Mitigating Clonal Variation in Recombinant Mammalian Cell Lines. Trends Biotechnol., 37(9), 931-942 (2019)


23. Lee JS‡, Park JH, Ha TK, Samoudi M, Lewis NE, Palsson BO, Kildegaard HF, Lee GM‡. Revealing key determinants of clonal variation in transgene expression in recombinant CHO cells using targeted genome editing. ACS Synth. Biol., 7(12), 2867-2878 (2018) DOI: 10.1021/acssynbio.8b00290

22. Grav LM, Sergeeva D, Lee JS, Marin de Mas I, Lewis NE, Andersen MR, Nielsen LK, Lee GM, Kildegaard HF. Minimizing Clonal Variation during Mammalian Cell Line Engineering for Improved Systems Biology Data Generation. ACS Synth. Biol., 7(9), 2148-2159 (2018) DOI: 10.1021/acssynbio.8b00140  

21. Petersen SD, Zhang J, Lee JS, Jakočiūnas T, Grav LM, Kildegaard HF, Keasling JD, Jensen MK. Modular 5'-UTR hexamers for context-independent tuning of protein expression in eukaryotes. Nucleic Acids Res., 46(21), e127 (2018) 

20. Baek E, Lee JS, Lee GM. Untangling the mechanism of 3-methyladenine (3-MA) in enhancing the specific productivity: Transcriptome analysis of recombinant CHO cells treated with 3-MA. Biotechnol. Bioeng., 115(9), 2243-22543 (2018)



19. Grav LM, la Cour Karottki KJ, Lee JS, Kildegaard HF. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells.  Methods Mol. Biol., 1603, 101-118 (2017)


18. Hefzi H*, Ang KS*, Hanscho M*, Bordbar A, Ruckerbauer D, Lakshmanan M, Orellana CA, Baycin-Hizal D, Huang Y, Ley D, Martinez VS, Kyriakopoulos S, Jiménez NE, Zielinski DC, Quek LE, Wulff T, Arnsdorf J, Li S, Lee JS, Paglia G, Loira N, Spahn PN, Pedersen LE, Gutierrez JM, King ZA, Lund AM, Nagarajan H, Thomas A, Abdel-Haleem AM, Zanghellini J, Kildegaard HF, Voldborg BG, Gerdtzen ZP, Betenbaugh MJ, Palsson BO, Andersen MR, Nielsen LK, Borth N‡, Lee DY‡, Lewis NE‡. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism. Cell Syst., 3(5), 434–443 (2016)
Press releases at, UCSD Health Sciences


17. Lee JS, Grav LM, Pedersen LE, Lee GM, Kildegaard HF. Accelerated Homology-Directed Targeted Integration of Transgenes in Chinese Hamster Ovary Cells via CRISPR/Cas9 and Fluorescent  Enrichment. Biotechnol. Bioeng., 113(11), 2518-2523 (2016)

- Most Accessed in 2016 in this journal; Outstanding Best Poster Award, Cell Culture Engineering XV, CA, USA 

16. Baek E, Kim CL, Kim MG, Lee JS, Lee GM. Chemical Inhibition of Autophagy: Examining its Potential to Increase the Specific Productivity of Recombinant CHO Cell Lines. Biotechnol. Bioeng., 113(9), 1953-1961 (2016)


15. Lee JS, Grav LM, Lewis NE, Kildegaard HF. CRISPR/Cas9 genome engineering of CHO cell factories: Application and perspectives. Biotechnol. J., 10(7), 979-994 (2015) 

- Most Cited/Accessed in 2015-2017 in this journal


14. Grav LM*, Lee JS*, Gerling S, Kallehauge TB, Hansen AH, Kol S, Lee GM, Pedersen LE, Kildegaard HF. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol. J., 10(9), 1446-1456 (2015)

- Most Cited/Accessed in 2015, 2016 in this journal 


13. Lee JS, Kallehauge TB, Pedersen LE, Kildegaard HF. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci. Rep., 5, 8572 (2015)



12. Kim YJ, Baek E, Lee JS, Lee GM. Autophagy and its implication in Chinese hamster ovary cell culture. Biotechnol. Lett., 35(11), 1753-1763 (2013)


11. Lee JS, Ha TK, Park JH, Lee GM. Anti-Cell Death Engineering of CHO Cells: Co-Overexpression of Bcl-2 for Apoptosis Inhibition and Beclin-1 for Autophagy Induction. Biotechnol. Bioeng., 110(8), 2195-2207 (2013)



10. Sathyamurthy M, Lee JS, Kim YJ, Park JH, Jeong JY, Jang JW, Lee GM. Overexpression of PACEsol improves BMP-7 processing in recombinant CHO cells. J. Biotechnol., 164(2), 336-339 (2012)


9. Lee JS, Lee GM. Estimation of autophagy pathway genes for autophagy induction: Controlled overexpression of Atg9A does not induce autophagy in recombinant Chinese hamster ovary cells. Biochem. Eng. J., 68, 221-226 (2012)


8. Lee JS, Ha TK, Lee SJ, Lee GM. Current state and perspectives on erythropoietin production. Appl. Microbiol. Biotechnol., 95(6), 1405-1416 (2012)

7. Lee JS, Lee GM. Rapamycin Treatment Inhibits CHO Cell Death in a Serum-Free Suspension Culture by Autophagy Induction.
     Biotechnol. Bioeng., 109(12), 3093-3102 (2012)


6. Lee JS, Kim YJ, Kim CL, Lee GM. Differential induction of autophagy in Caspase-3/7 downregulating and Bcl-2 overexpressing rCHO cells upon NaBu treatment. J. Biotechnol., 161(1), 34-41 (2012)


5. Lee JS, Lee GM. Effect of Sodium Butyrate on Autophagy and Apoptosis in Chinese Hamster Ovary Cells. Biotechnol. Prog., 28(2), 349-357 (2012)

4. Lee JS, Lee GM. Monitoring of autophagy in Chinese hamster ovary cells using flow cytometry. Methods, 56(3), 375-382 (2012)



3. Han YK, Ha TK, Lee SJ, Lee JS, Lee GM. Autophagy and Apoptosis of Recombinant Chinese Hamster Ovary Cells during Fed-Batch Culture: Effect of Nutrient Supplementation. Biotechnol. Bioeng., 108(9), 2182-2192 (2011) 



2. Lee JS, Park HJ, Kim YH, Lee GM. Protein reference mapping of dihydrofolate reductase-deficient CHO DG44 cell lines using 2-dimensional electrophoresis. Proteomics, 10(12), 2292-2302 (2010)


1. Sung YH*, Lee JS*, Park SH, Koo J, Lee GM. Influence of co-down-regulation of caspase-3 and caspase-7 by sodium butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab. Eng., 9(5-6), 452-464 ​(2007)